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The incommensurately modulated structure of K3In(PO4)2

has been solved and re®ned. The origin of the modulation

relates to the ordering of K cations within the hexagonal close

packing of the PO4 anions. The driving forces for the

modulation of the other cations are InÐP and KÐP

interactions. The modulation of O atoms of rigid PO4 units

follows the cations in order to stabilize the InO6 octahedron. It

is shown that the previously published three-dimensional

structure re®ned from powder diffraction data obtained at

room temperature is an average structure. Therefore the

incommensurately modulated phase of K3In(PO4)2 is the only

one that has been unequivocally identi®ed at room tempera-

ture. The origin of the modulation is discussed in comparison

with the structures of Na3InP2, �- and �-Na3In(PO4)2,

Na3Fe(PO4)2 and Rb3In(PO4)2.
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1. Introduction

Potassium indium double phosphate, K3In(PO4)2, was ®rst

obtained (Zhizhin et al., 2002) as powder and single-crystal

specimens by sintering In2O3, KH2PO4 and K2CO3 at the

temperatures 1173 K and 1473 K, respectively. Preliminary

X-ray investigation (Zhizhin et al., 2002) gave identical

monoclinic unit cells for both powder and single-crystal

specimens. In addition, a few weak satellite re¯ections, which

were detected from single-crystal diffraction with a CAD-4

(Mo K� radiation) diffractometer, revealed the modulated

character of the crystal. A powder sample of K3In(PO4)2 was

used for the crystal structure investigation with a Stadi-P

(Stoe) diffractometer (Cu K�1; 8 < 2� < 100�; room tempera-

ture). The crystal structure was determined and re®ned by the

Rietveld method (Zhizhin et al., 2002) in a three-dimensional

space group [C2/c, a = 15.6411 (1), b = 11.1909 (1),

c = 9.6981 (1) AÊ , � = 90.119 (1)�; V = 1697.53 (3) AÊ 3; Z = 8;

�2 = 4.88, Rp = 4.02%, Rwp = 5.25%]. The pro®le parameters

were satisfactorily re®ned without considering any satellite

re¯ection. A preliminary test from single-crystal diffraction

(Oxford Diffraction/CCD diffractometer, Mo K� radiation)

showed a series of strong satellites in the (hk0), (hk1) and

(hk2) planes. These results were in reasonable accordance

with the unit-cell parameters obtained from powder re®ne-

ment. The purpose of this paper is to present the results of the

structural analysis of the modulated structure and explain the

relationship between the modulated structure and the solution

deduced from powder diffraction. The structure is also

compared with other double phosphates A3R(PO4)2, where

A = K, Na and Rb and R = In, Fe, and with the Na3InP2 alloy.

These structures can be understood as hexagonal close pack-

ings of P atoms with different distributions of R and A atoms

inside the P6 octahedra and P5 bipyramids. This characteristic
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will be used to explain the origin of the modulations in

K3In(PO4)2.

2. Experimental

2.1. Synthesis

Single crystals of K3In(PO4)2 were prepared by sintering a

stoichiometric ratio of In2O3, KH2PO4 and K2CO3 at 1473 K

for 4 h in air. Detailed information on the preparation is given

by Zhizhin et al. (2002).

2.2. Data collection

The data collection was performed with an Oxford

Diffraction CCD diffractometer in half of reciprocal space. A

standard peak search on the recorded frames resulted in

12370 peak positions. A ®rst re®nement, based on these peaks,

of the unit-cell parameters and a reciprocal space recon-

struction were performed with the CrysAlis software (Oxford

Diffraction Ltd, 2001). With this procedure the ratio of the

indexed peaks to the extracted peaks was rather poor. The

reconstruction of the reciprocal space showed that the non-

indexed re¯ections could be interpreted as ®rst- and

second-order satellites with the modulation vector

q = � a� � � b� �  c�, where � and � are approximately 0.2

and  = 0. The coef®cients �, � and , along with the para-

meters of the orientation matrix, were re®ned with the

program NADA (SchoÈ nleber et al., 2001); the re®nement was

based on the 12370 peak positions found with the standard

search routine. With the unit cell and the modulation vector,

more than 96% of the peaks were successfully indexed. Data

integration of the recorded frames and Lorentz and polar-

ization corrections were performed with the CrysAlis software

(Oxford Diffraction Ltd, 2001). The systematic absences hklm,

h + l + m = 2n, imply the non-primitive cell-centring vector

(1=2; 0; 1=2; 1=2), which corresponds to a B centring of the

3d unit cell. The additional re¯ection conditions (hk0m:

k + m = 2n) imply two possible superspace groups:

X2/b(��0)0s and Xb(��0)s. The centrosymmetric superspace

group was chosen because of the absence of a signal in the

second-harmonic generation test (Zhizhin et al., 2002). This

choice was con®rmed by the successful solution and re®ne-

ment of the structure. The basic experimental data are listed in

Table 1.1

3. Structure determination

3.1. Determination and refinement of the average structure

The average structure was solved by the heavy-atom

method. Atomic coordinates and equivalent isotropic displa-

cement parameters for the average structure of K3In(PO4)2

are compared in Table 2 with those obtained previously by

Zhizhin et al. (2002). The splitting of the K4 atomic position

(the distance K4aÐK4b � 1.5 AÊ ) was well identi®ed. The

re®nement converged to R = 11.8% with very large displace-

ment ellipsoids for K and especially for O atoms. The lowest

value of the R factor could only be reached for the average

structure with split O positions.

The average structure is practically the same as the model

described by Zhizhin et al. (2002). The framework is built up

from vertex- and edge-sharing InO6 octahedra and PO4

tetrahedra. K cations surrounded by seven or eight O atoms

are located in channels of the framework. This standard

description is based on polyhedra of the ®rst coordination

sphere of cations. In spite of the large temperature parameters

there are no obvious discrepancies with the ®rst-coordination-

sphere geometry of the average structure: the interatomic

distances within the PO4 tetrahedra and InO6 octahedron

[InÐO, 2.02±2.33, h2.14i; PÐO, 1.51±1.54, h1.53i; KÐO, 2.54±

Table 1
Experimental details.

Chemical formula InK3O8P2

Chemical formula weight 422.1
Cell setting, superspace group Monoclinic, X2/b(��0)0s with

non-primitive translation
X = [0.5 0 0.5 0.5]

a, b, c (AÊ ) 15.6537 (5), 9.7357 (4), 11.1975 (4)
 (�) 90.124 (5)
V (AÊ 3) 1706.49 (11)
Z 8
Dx (Mg m±3) 3.284 (1)
Modulation wave vector q = 0.18813 (5)a* + 0.21423 (3)b*
Radiation type Mo K�
No. of re¯ections for cell para-

meters
12370

� range (�) 3±51.8
� (mm±1) 4.62
Temperature (K) 293
Crystal form, colour Cube, red
Crystal size (mm) 0.2 � 0.19 � 0.18
Diffractometer KM4
Data collection method CCD detector KM4CCD/

SAPPHIRE
Absorption correction None
No. of measured, independent and

observed re¯ections
125 808, 41 649, 11 828

No. of main, ®rst-order satellite
and second-order satellite
re¯ections

3328, 5420, 3080

Criterion for observed re¯ections I > 3�(I )
Rint 0.1
�max 51.8
Range of h, k, l, m ÿ34) h) 34

0) k) 21
0) l) 24
ÿ2) m) 2

Re®nement on F
R[F 2 > 3�(F 2)], wR[F 2 > 3�(F 2)], S 0.059, 0.059, 2.03
R, wR (main re¯ection) 0.042, 0.042
R, wR (satellites of order 1) 0.058, 0.058
R, wR (satellites of order 2) 0.105, 0.117
No. of re¯ections and parameters

used in re®nement
11828, 364

Weighting scheme w = 1/[�2(F) + 0.0001F 2]
(�/�)max 0.001
��max, ��min (e AÊ ÿ3) 4.16, ÿ3.31

² Computer programs: CrysAlis (Oxford Diffraction Ltd, 2001); JANA2000 (PetrÏõÂcÏek &
DusÏek, 2000).

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SN0028). Services for accessing these data are described
at the back of the journal.



3.37, h2.91i AÊ ] are in a good agreement with the expected

values.

Therefore, in order to understand the origin of the modu-

lation, our description of the structure is based on the second

coordination sphere of the cations (see Figs. 1a and 1b). The

centres of the PO4 tetrahedra (the P atoms) form simple

hexagonal close packing of the PO4 anions. As the second

coordination sphere plays a dominant role we shall hereinafter

use instead of full symbols M(PO4)n (M = In, K; n = 4, 5, 6 for

the tetrahedron, trigonal bipyramid and octahedron, respec-

tively) a short symbol MPn for the cationic polyhedra of the

second coordination sphere.

All octahedra are occupied with K1, K2 and K3 cations

(K1P6, K2P6 and K3P6); all trigonal bipyramids are ®lled with

In and K4 cations (InP5 and K4P5). As seen from Fig. 1(b), the

splitting of the K4 cation is a consequence of the statistical

distribution between the two tetrahedra that form the trigonal

bipyramid. The ordering of K4 cations over the two P4-tetra-

hedra positions is possibly the driving force for the modula-

tions in the crystal.

3.2. Refinement of the modulated structure

The average structure derived from unsplit O atoms was

used as a starting model for the re®nement of the modulated

structure. A ®rst-harmonic wave for displacive modulation

was re®ned for all cation positions except for K4. The

re®nement converged smoothly. The x1±x4 sections (Fig. 2a) of

the Fourier synthesis, which were calculated in the vicinity of

the K4a and K4b positions, revealed a step-like character of

the positional modulation. The distance between the sepa-

rated positions was about 1.5 AÊ , which ®tted well with the

average-structure results. Such behaviour can be modelled by

a crenel function for both atoms (PetrÏõÂcÏek et al., 1995). The

obvious complementary character of the modulation and the

condition that these positions must be fully occupied lead to

the following restrictions:

��K4b� � 1ÿ��K4a�;

x0
4�K4b� � 1=2� x0

4�K4a� ÿ q � r�K4a� � q � r�K4b�;
where x0

4 and � are the centre and length, respectively, of the

crenel function.

The O ions are strongly bonded in the PO4 groups and

therefore it is natural to suppose that the modulation does not

affect the rigidity of the PO4 groups. P1O4 was successfully

re®ned as an entity with four harmonic waves for the trans-

lation and the rotation. The same modulation model for P2O4

did not yield a satisfying result. A detailed analysis of the

Fourier maps in the vicinity of this group led to the conclusion

Acta Cryst. (2003). B59, 17±27 Alla Arakcheeva et al. � K3In(PO4)2 19

research papers

Table 2
Atomic parameters of the average structure of K3In(PO4)2.

Entries in italics indicate the corresponding data obtained by Zhizhin et al.
(2002) for the K3In(PO4)2 three-dimensional structure with X-ray powder
diffraction data.

Atom x y z Biso

In ÿ0.12399 (5) ÿ0.07424 (8) 0.36090 (7) 2.50 (2)
ÿ0.1251 (1) ÿ0.0747 (1) 0.3623 (1) 3.0 (1)

K1 0 ÿ0.25 0.6135 (4) 3.8 (1)
0.6146 (3) 5.7 (1)

K2 0 ÿ0.25 0.1235 (4) 7.1 (2)
0.1245 (4) 5.1 (1)

K3 0.2522 (2) ÿ0.2075 (4) 0.1202 (3) 4.50 (8)
0.2532 (1) ÿ0.2085 (2) 0.1276 (2) 3.1 (1)

K4a, p = 0.59 (1) 0.5832 (3) 0.0979 (5) 0.6139 (3) 3.9 (1)
p = 0.58 (3) 0.5918 (3) 0.0966 (4) 0.6085 (3) 3.7 (3)

K4b, p = 0.41 (1) ÿ0.1749 (7) ÿ0.0991 (8) 0.9102 (9) 4.2 (2)
p = 0.42 (3) ÿ0.1828 (3) ÿ0.1009 (6) 0.9015 (9) 3.7 (3)

P1 0.15184 (20) ÿ0.0705 (3) 0.8558 (3) 2.79 (6)
0.1498 (3) ÿ0.0726 (3) 0.8502 (3) 2.1 (1)

O11 0.1401 (5) 0.0868 (8) 0.8381 (7) 2.5 (2)
0.1338 (3) 0.0831 (4) 0.8455 (4) 3.2 (2)

O12 0.1364 (8) ÿ0.1287 (9) 0.7289 (9) 5.2 (3)
0.1357 (3) ÿ0.1310 (5) 0.7270 (3) 3.1 (2)

O13 0.2434 (6) ÿ0.1027 (15) 0.8912 (7) 4.9 (3)
0.2448 (2) ÿ0.0975 (6) 0.8965 (4) 2.8 (2)

O14 0.0928 (6) ÿ0.1271 (11) 0.9489 (10) 4.3 (3)
0.0925 (4) ÿ0.1375 (5) 0.9421 (10) 2.8 (1)

P2 0.09846 (14) ÿ0.0817 (3) 0.36844 (18) 1.55 (4)
0.0999 (1) ÿ0.0835 (3) 0.3684 (2) 2.6 (1)

O21 0.1131 (7) ÿ0.2217 (12) 0.4344 (9) 4.3 (3)
0.1086 (3) ÿ0.2298 (5) 0.4192 (4) 3.0 (2)

O22 0.0067 (7) ÿ0.0601 (17) 0.3306 (15) 8.1 (5)
0.0086 (7) ÿ0.0557 (17) 0.3299 (15) 3.2 (1)

O23 0.1580 (11) ÿ0.056 (2) 0.2715 (15) 11.4 (7)
0.1584 (11) ÿ0.0724 (6) 0.2588 (5) 7.0 (2)

O24 0.1170 (12) 0.0288 (14) 0.4535 (10) 8.4 (6)
0.1282 (4) 0.0202 (5) 0.4623 (4) 5.7 (2)

Figure 1
The average structure of K3In(PO4)2. The K4(PO4)5 and In(PO4)5

trigonal bipyramids are shown in the (100) projection (a) and in the
characteristic layer normal to the [001] direction (b); the K1(PO4)6,
K2(PO4)6 and K3(PO4)6 octahedra are indicated with six KÐP sticks. The
split K4 cation is statistically distributed between two tetrahedra within
the K4(PO4)5 bipyramid.
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that three complementary crenel functions could better

account for its modulation. The analogous restrictions to those

used for the K4 atom are

��P2O4c� � 1ÿ��P2O4a� ÿ��P2O4b�;

x0
4�P2O4b� � 1=2 ��P2O4a� ���P2O4b�� �

� x0
4�P2O4a� ÿ q � r�P2O4a� � q � r�P2O4b�:

x0
4�P2O4c� � 1=2 ��P2O4b� ���P2O4c�� �

� x0
4�P2O4b� ÿ q � r�P2O4b� � q � r�P2O4c�:

For P2O4 this model leads immediately to a satisfactory ®t.

The fact that several atoms are modulated discontinuously

raises the question of whether the continuous functions used

for all other atoms properly describe the modulation. The

Fourier maps (Fig. 2a) showed that the positional modulation

of In and P1O4 would better be described by a function that

has one discontinuity within the x4 interval. Therefore the saw-

tooth function as introduced by PetrÏõÂcÏek et al. (1990) was

applied (Figs. 2b and 2c); the result was a slight decrease of the

R factors. Moreover a strong connection between In and P1O4

allowed these atoms to be restricted. In the ®nal calculation,

four harmonic waves for the modulation of displacement

parameters were used for K1, K2 and K3 and three for In.

Crystal data and the main characteristics of the re®nement are

indicated in Table 1.

3.3. Results of refinement

The ®nal coordinates, Fourier amplitudes of displacive

modulation functions, equivalent isotropic displacement

parameters for all atoms, and the anisotropic displacement

parameters (ADP) and their modulated parameters are

available in the supplementary material. The modulation

parameters of the PO4 rigid units are listed in Table 3.

3.3.1. Modulation of cations and cation±cation distances.
The re®ned modulated structure answers the questions raised

in the solution of the average structure. The disordered K4

cations are uniquely distributed over the intervals de®ned by

the crenel functions. The atomic displacement parameters of

all atoms are reasonable. The analysis of the cation±cation

distance as a function of t con®rms the validity of the

suggested structure presentation (Figs. 1 and 3).

Both the saw-tooth modulated P1 atom and the three crenel

positions of the P2 atoms maintain 12 PÐP distances for every

P atom (Fig. 4), and the P atoms (or more exactly PO4 anions)

subset exhibit a distorted hexagonal close packing. The large

magnitudes of the PÐP distances, which vary from 4.1 to

6.4 AÊ , arise from the shape of the PO4 tetrahedral anion. The

maximum `diameter' of this rigid unit can be estimated as

5.8 AÊ = 2 � 2.9 AÊ [1.54 AÊ (PÐO

distance) + 1.36 AÊ (radius of O2ÿ)],

which con®rms the higher limit of

the variation.

As expected, the most prominent

behaviour of the displacive para-

meters occurs for the K4 cation. This

cation is continuously distributed

within two t ranges (K4a, �0.1 <

t < �0.7; K4b, �ÿ0.3 < t < 0.1),

which the cation switches between

(Figs. 2 and 5). This behaviour is

associated with the ordered distri-

bution of K4 within the two P4

tetrahedra that form the trigonal P5

bipyramid (Fig. 3).

The modulations of all the other

cations correlate with K4, as

partially illustrated by the x1±x4

Fourier section (Fig. 2a). The prin-

cipal tendency of the correlation is

to maintain the second coordination

sphere and coordination number

(CN) of the In and K4 cations:

In[P,K]11 (distances 2.84±4.4 AÊ ),

K4a[P,K]11 (distances 3.2±4.4 AÊ ) and

K4b[P,K]10 (distances 3.15±4.5 AÊ ),

where K refers to the K1, K2 and

K3 cations. The distances in the

InP5 trigonal bipyramid [one

2.84 (0.07) AÊ and four 3.1±3.7 AÊ ,

Figure 2
Three x1±x4 sections of the Fourier synthesis. The electron density was summed within �x2 = �x3 = 1 AÊ

around the corresponding values indicated at the top. The crenel functions for K4a and K4b are shown
in the centre of (a) (0.1 < x1 < 1.1; 0 < x4 < 2; the contour step is 300 e AÊ ÿ3). The saw-tooth functions are
shown in (b) for In (the contour step is 1000 e AÊ ÿ3) and in (c) for P1 (the contour step is 300 e AÊ ÿ3)
atoms. The re®ned atomic modulation functions are indicated by bold lines.



Fig. 5(a)] and in the K4P4 tetrahedra [3.1±3.9 AÊ , Fig. 5(c)] are

essentially shorter and more stable along the t coordinate than

other distances in the corresponding polyhedra. In the InP5

trigonal bipyramid, instead of six right angles there are three

angles that vary around 100� and three angles that vary around

80� (Fig. 5b). This behaviour indicates a small shift of the In

atom from the centre of the bipyramid into one tetrahedron.

The three crenel positions of the P2O4 tetrahedron and its

discontinuous rotation (Table 3) relate to the three kinds of

K4 distribution within two edge-sharing K4P5 trigonal bi-

pyramids, as shown in Fig. 6. As seen from Fig. 6, whether the

P2O4 tetrahedron, which is located at the top of the trigonal

bipyramid, is included in the K4P4 (more speci®cally

K4[PO4]4) tetrahedron depends on the kind of distribution.

The K1P6, K2P6 and K3P6 octahedra are not regular and

stable along the t coordinate (KÐP distances vary from 3.3 to

4.4 AÊ ). However, this second coordination sphere is more

stable than the ®rst sphere formed by O atoms. The number of

O atoms varies between 6±7 for K1, 7±8 for K2 and 6±8 for K3

within the 2.4±3.2 AÊ range of the KÐO distance.

3.3.2. Modulation of the PO4 tetrahedra and InO6 octa-
hedron. In the three crenel ranges both the P1O4 and the P2O4
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Table 3
Modulation parameters of the PO4 rigid units.

Wave x1 translation x2 translation x3 translation ' rotation � rotation  rotation

P1O4 tetrahedron
Saw-tooth function parameters: x0

4 = 0.242473 (6); �x1 = 0.0072; �x2 = 0.0079; �x3 = ÿ0.0199
0.00009 (5) 0.00055 (9) 0.00000 (7) 0.0 0.0 0.0

s,1 0.00342 (7) ÿ0.00331 (12) 0.00165 (10) 0.00275 (10) ÿ0.00384 (17) 0.00567 (15)
c,1 ÿ0.00508 (6) ÿ0.01073 (11) 0.00055 (8) 0.00088 (9) 0.00590 (15) ÿ0.00789 (14)
s,2 ÿ0.00116 (8) ÿ0.00461 (13) ÿ0.00413 (10) 0.00328 (11) ÿ0.00502 (19) 0.00143 (17)
c,2 ÿ0.00157 (9) 0.00539 (13) ÿ0.00235 (12) ÿ0.00062 (12) 0.0032 (2) ÿ0.00019 (18)
s,3 0.00076 (18) 0.0054 (3) 0.0013 (2) ÿ0.0021 (2) 0.0039 (4) 0.0012 (4)
c,3 ÿ0.00155 (17) 0.0027 (3) ÿ0.0021 (2) 0.0012 (2) ÿ0.0001 (4) 0.0002 (4)

P2O4 tetrahedron
Position a: �x4 = 0.4132 (13); x0

4 = 0.1130 (8)
0.00241 (8) 0.00651 (14) 0.00130 (11) 9.624 ÿ0.587 ÿ42.694

s,1 ÿ0.0016 (10) 0.0037 (14) ÿ0.0002 (12) ÿ0.0012 (12) 0.007 (2) 0.0004 (19)
c,1 0.0013 (17) ÿ0.000 (2) ÿ0.000 (2) ÿ0.000 (2) ÿ0.003 (3) 0.000 (3)
Position b: �x4 = 0. 3799 (13); x0

4 = 0.5051 (10)
ÿ0.00228 (8) ÿ0.01017 (14) ÿ0.00190 (11) ÿ4.98 (18) 25.64 (15) ÿ42.60 (17)

s,1 ÿ0.00316 (10) ÿ0.01626 (17) 0.00063 (13) 0.00031 (13) 0.0031 (2) ÿ0.0048 (2)
c,1 ÿ0.00032 (16) ÿ0.00159 (23) ÿ0.00064 (21) ÿ0.0006 (2) ÿ0.0004 (4) 0.0000 (3)
Position c: �x4 = 0. 2070 (13); x0

4 = 0.8025 (14)
ÿ0.00018 (13) 0.00678 (21) 0.00116 (15) ÿ0.07 (19) ÿ0.37 (18) ÿ0.03 (17)

Figure 3
A portion of the characteristic layer normal to the [001] direction of the modulated structure. The x and the y axes correspond to the x1 and x2 directions,
respectively. The Bp (bipyramid) and the O (octahedron) notations indicate the P5 = (PO4)5 trigonal bipyramid portion and the P6 = (PO4)6 octahedron
portion, respectively. Every K4 cation is shifted into one tetrahedron (shown with light grey colour) within the P5 = (PO4)5 bipyramid. The K(PO4)6

octahedra are indicated with six KÐP sticks.
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tetrahedra were re®ned as rigid units. Every tetrahedron has

one non-shared O corner (O14 for P1 and O23 for P2) with a

PÐO distance (1.51 � 0.01 AÊ ) shorter than average (1.54 AÊ ).

The P1O4 tetrahedron shares the O11ÐO12 edge with the

InO6 octahedron. The corresponding P1ÐO11 and P1ÐO12

distances [1.56 (0.01) AÊ ] are slightly longer than the average

value. The respective tetrahedron O11ÐP1ÐO12 angle is

smaller [104 (1)�] while all other angles maintain the expected

value [110 (2)�]. Within the more regular P2O4 tetrahedron,

the PÐO distances and the tetrahedron angles vary less

[1.54 (0.01) AÊ and 108 (1)�, respectively].

The In octahedron is formed with three O atoms (O11, O12,

O13) that belong to the P1O4 tetrahedron and three O atoms

(O21, O22, O24) from P2O4 (Fig. 7). The modelling of the

modulation of the P2O4 group by three crenel functions

(labelled a, b and c) leads to four different combinations of

groups adjacent to In: aab, cca, bba and abc (see Figs. 5±7),

where the letters correspond to the crenel branches of the

O21, O22 and O24 atoms, respectively. In the InP5 trigonal

bipyramid, the distances and angles (see Figs. 5a and 5b) are

relatively stable over the full t range in spite of the existence of

the four intervals. The discontinuous displacements of the P2

atoms at the borders cause a discontinuous rotation of the

P2O4 tetrahedron (Table 3) to complete the InO6 octahedron

(Fig. 7). Thus the stabilization of the InO6 octahedron is the

main reason of the P2O4 tetrahedron rotation as a function of

the t coordinates.

All of the InO6 octahedra are distorted (Fig. 7). Their

deformation results from the common O11ÐO12 edge, which

is shared by the InO6 octahedron and the P1O4 tetrahedron.

As in the tetrahedron the InÐO11 and InÐO12 distances

[2.25 (0.10) AÊ ] are longer than the other four [2.11 (0.12) AÊ ].

The relatively short O11ÐO12 edge leads to a very small

angle O11ÐInÐO12 [(1) = 65.5 (0.9)� in Figs. 7(b) and 7(c)].

This angle does not vary essentially as a function of t (Fig. 7b).

This stability is a consequence of the approximately constant

P1ÐIn distance (Fig. 5a) and relates to the constant shape of

Figure 5
Geometrical characteristics of the In and K4 second coordination sphere
as a function of t in the modulated structure: (a) distances and (b) angles
in the InP5 trigonal bipyramids; (c) distances in the K4P4 tetrahedra.

Figure 4
The PÐP distances that characterize the close packing of the PO4

tetrahedral anions in the modulated structure.



the P1O4 tetrahedron. The most relevant variations as a

function of t relate to the angles (2), (3) and (4) (Figs. 7b and

7c). The distorted InO6 octahedron tends to maintain the sum

of the angles close to the ideal value of 360� (see Figs. 7b and

7c). In addition, the magnitude of a single angle can vary by up

to 15% within a speci®c t range and up to 35% over the full

range. The stabilization of the InO6 geometry is the driving

force of the P2O4 rotation modulation. This can be accom-

modated by introducing a modulation of the OÐInÐO angle

distortion.

4. Discussion

4.1. Origin of the K3In(PO4)2 structure modulation

We assume that the main cause of the structure modulation

is related to the ordering of the K4 cation over two P4 (more

speci®cally [PO4]4) tetrahedra that form the trigonal P5

([PO4]5) bipyramid within the hexagonal close packing of the

PO4 anions (Fig. 3). Three different kinds of the K4 envir-

onment within two PÐP edge-sharing bipyramids lead to

three positions of the P2 atom (Fig. 7c). Three P2 atoms and

two P1 atoms form the InP5 trigonal bipyramid, which is stable

as a function of the t coordinate (Fig. 5a and 5b). Therefore,

the modulation of P2 induces the modulation of the In and P1

atoms. The tendency to maintain the KP6 octahedra, where

K = K1, K2, K3, explains the modulation for the K1, K2

and K3 cations. The discontinuous rotation modulation of

the P2O4 tetrahedra allows the stabilization of the InO6

octahedron.

4.2. Conformation of the origin of the K3In(PO4)2 structure
modulation

4.2.1. Chemical bonds in K3In(PO4)2. The result of the

modulated structure re®nement allows us to trace the varia-

bility of the interatomic distances and draw a conclusion about

the existence and stability of chemical bonds. Conversely, this

analysis justi®es the role of the structure modulation.

As expected, the PÐO covalent bonds are the least variable

and therefore the most stable entities in the framework.

Therefore the PO4 tetrahedral anions can be interpreted as

building units similar to mono-atomic anions.

A comparison of the InP5 bipyramid geometry (Figs. 5a and

5b) and the InO6 octahedron geometry (Figs. 7a and 7b) shows

that the magnitudes of both interatomic-distance and angle

variations as functions of t are smaller for the second coor-

dination sphere (the InP5 bipyramid) than for the ®rst (the

InO6 octahedron). Therefore, the InÐP interactions are more

stable than the InÐO interactions in K3In(PO4)2. Moreover,

the shortest InÐP distance [2.84 (0.05) AÊ ], which is practically

constant, is equal to the covalent InÐP bond length

(2.59±2.68 AÊ ) that is found in the InP4 tetrahedron (taking

into account different CNs: 5 and 4, respectively). The InP4

tetrahedron is a characteristic of the K3InP2 (Ohse et al., 1993)

and Na3InP2 (Blase et al., 1991) alloys, which exhibit identical

cationic composition and/or stoichiometry. Therefore the

InÐP interactions exist in the K3InP2 alloy and are partially

conserved following the alloy's oxidation to K3InP2O8

[= K3In(PO4)2]. The presence of one covalent InÐP bond in

the InP5 = In[(PO4)]5 trigonal bipyramid can explain the

unusual common OÐO edge shared by the P1O4 tetrahedron

and InO6 bipyramid. The very short InÐP distance (2.84 AÊ )

does not permit a PO4 tetrahedron and an InO6 octahedron to

share only a single O atom. On the other hand, it is clear that

the ®ve PO4 tetrahedral anions that surround the In cation in

the In[(PO4)]5 trigonal bipyramid can form six O corners of

the InO6 octahedron, where the PO4 tetrahedra share at most

two O atoms per tetrahedron (Fig. 7c).

Analogous arguments support the presence of KÐP inter-

actions in K3In(PO4)2. In the K3InP2 alloy, the shortest KÐP

distances are equal to 3.25 and 3.28 AÊ . These values are close

to the estimated covalent KÐP bond (3.13 AÊ ). In K3In(PO4)2,

the variation of the KÐP distances in both KP4 tetrahedra

(K4a, 3.3±3.8 AÊ ; K4b, 3.05±3.85 AÊ ) and KP6 octahedra (K1,

3.3±4.2 AÊ ; K2 and K3, 3.3±4.6 AÊ ) allows us to postulate the

existence of KÐP interactions, especially in the K4P4 tetra-

hedra. A comparison of the ®rst (oxygen) coordination sphere

[the K4ÐO distances K4a, 2.65±3.3 AÊ (CN = 6±7); K4b,

2.4±3.3 AÊ (CN = 7±8)] and the second (phosphor) [CN = 4, the

K4ÐP distances K4a, 3.3±3.8 AÊ ; K4b, 3.15±3.9 AÊ (Fig. 5c)]

shows that the second sphere is much more stable as a function

of the t coordinate. The shift of the K4 cation from the centre

of the K4P5 trigonal bipyramids into K4P4 tetrahedron can

only be explained as a result of KÐP interactions. The ®rst

(oxygen) coordination sphere varies essentially both in
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Figure 6
Portion of a chain of the P5 = (PO4)5 trigonal bipyramids in the modulated structure. Light grey tetrahedra indicate the location of the K4 cations within
the trigonal bipyramids. The In(PO4)5 bipyramids are represented by ®ve PO4 tetrahedral anions that surround every In cation (black circles). The
notation 1, 2a, 2b and 2c refers to the corresponding PO4 tetrahedra (Table 3). The six sticks connected to the black circles (In cations) and the corners of
the tetrahedra (O atoms) indicate the InO6 octahedron.
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distances and in the CN with t for this atom, which con®rms

the KÐP interaction in K3In(PO4)2. Both InÐP and KÐP

complex interactions must be considered as the driving forces

for the modulations in this structure, where P plays the role of

both an atom and the centre of the complex PO4 anion.

4.2.2. Cationic array in a-, b-Na3In(PO4)2, Na3Fe(PO4)2,
Rb3In(PO4)2 and Na3InP2. The presence of the cation±[centre

of anion] interactions in K3In(PO4)2 justi®es our proposed

interpretation. Moreover, this description also seems to be

valid and useful both for a large group of A4ÿnRn(XO4)2

compounds (A is an alkaline element; R = Y, Bi, In, rare earth

or transition element; X = S, P, V, As; n = 0±4), which are

related to the well known glaserite [K2Na(SO4)2] and/or the �-

K2SO4 structure type, and for intermetallic compounds related

to the Ni2In structure type. The Ni2In structure type is usually

described as a hexagonal close packing of In atoms (anions);

the Ni atoms (cations) are located in In6 octahedra and In5

trigonal bipyramids. Therefore, the formula can be expressed

as Ni[o]Ni[bp]In. The cationic subset A4ÿnRnX2 for the afore-

mentioned oxides can be interpreted in the same way: X atoms

(centres of complex anions) form the hexagonal close packing;

A and R atoms (cations) ®ll the X6 octahedra and X5 trigonal

bipyramids. The formula can be written as (A,R)[o](A,R)[bp]X.

In the oxides, which are similar to the Ni2In-related

compounds, the deformation and modi®cation of the ideal

structure is linked to the following factors: (i) the distribution

and ordering of cations among octahedra and bipyramids; (ii)

the distortion of the ideal close packing; (iii) the shifting of

cations from the centre of the bipyramid toward the tetra-

hedron; (iv) the shifting of cations from the centre of octa-

hedron. As can be seen, for example, from the work of

Pearson (1972), in the Ni2In-related compounds all these

factors depend on both the relative size of the atoms and the

covalent component of the bonds. Therefore, the same argu-

ments can be applied for the oxides.

In order to lend support to the relative independence of the

cationic subset and the role of the XO4 entity, we compare

four structures from the double phosphate family [�-,

�-Na3In(PO4)2E (Zhizhin et al., 2000), Na3Fe(PO4)2 (Morozov

et al., 2001) and Rb3In(PO4)2 (Zhizhin et al., 2002)] with the

corresponding alloy Na3InP2 (Blase et al., 1991) (Fig. 8,

Table 4). As seen from Fig. 8, in comparison with Fig. 3, all

these structures can be described by a distorted hexagonal

close packing of P atoms (centre of PO4 or P anions). Similarly

Figure 7
Geometrical characteristics of the ®rst In coordination sphere and an illustration of their changes as a function of t in the modulated structure: (a)
variation of the InÐO distances and (b) the more ¯exible angles in the basis of the InO6 octahedron within four t ranges (see the text for the labelling of
the In surrounding); (c) illustration of different kinds of In surrounding in physical space. (1), the smallest acute angle O11ÐInÐO12; (2) and (3), the
supplementary angles O11ÐInÐO21 and O12ÐInÐO24, respectively; (4), opposite angle O21ÐInÐO24. The labels a, b, c correspond to three crenel
positions of the P2O4 tetrahedron (Table 3).



to K3In(PO4)2, the Na (Rb) and In (Fe) cations are distributed

inside the octahedra and trigonal bipyramids. In each bipyr-

amid, the cation is shifted into one of the two constituting

tetrahedra. Different kinds of cationic distribution lead to the

following:

(i) Different types of close-packing distortions.

Na3Fe(PO4)2 and Na3In(PO4)2 exhibit octahedra that are

more regular, in which `strong' three-valence Fe3+ and In3+

cations are located. The Na and Rb octahedra in Na3InP2 and

Rb3In(PO4)2, respectively, are much more distorted and are

similar to the K1, K2 and K3 octahedra in K3In(PO4)2. Pair-

wise comparison of Na3Fe(PO4)2/�-Na3In(PO4)2 and

K3In(PO4)2/Rb3In(PO4)2 shows the in¯uence of the cation

size inside the octahedron on the degree of close-packing

distortion. In the close packing the PÐP distances are inde-

pendent of the presence of O atoms in the structure [compare

Na3Fe(PO4)2, Na3In(PO4)2 and Na3InP2 in Table 4]. These

distances depend only on the size of the cation located in the

octahedra (compare K, Rb and Na compounds in Table 4).

(ii) Different types of the PO4 disposition [compare the �
and � modi®cations of Na3In(PO4)2 in Fig. 8].

The role of the chemical bonds in the ®rst coordination

sphere of the In atom (six ionic covalent bonds InÐO in the

oxides and four covalent bonds InÐP in the alloy) is revealed

by the atom's different localization in the P5 bipyramid. The In

atom is practically undisplaced, i.e. at the centre of the

bipyramid, in K3In(PO4)2 and Rb3In(PO4)2 [CN(In) = 5],

whereas a maximal shift into the centre of the P4 tetrahedron

is observed in Na3InP2 [CN(In) = 4].

4.3. The modulated and the three-dimensional structure
refinement of K3In(PO4)2

The distinction between the previously determined three-

dimensional structure (Zhizhin et al., 2002) and the modulated

re®nement of K3In(PO4)2 presented here must be raised. As

seen in Table 2, all atomic parameters of the average structure

of K3In(PO4)2 are equivalent to the corresponding parameters

reported for the three-dimensional structure re®ned from

X-ray powder diffraction data. The slightly smaller displace-

ment parameters can be related to the speci®c features of the

Rietveld re®nement technique; ®xed atomic displacements

and bond restraints have been used for the pro®le re®nement

procedure. The large temperature displacements of the K

atoms and the much more important displacement of the O2n

(n = 1±4) atoms compared with the O1n atoms are char-

acteristic of both the average and the three-dimensional

models. Moreover, the splitting in the K4 position was ®rst

revealed in the average structure of the modulated model and

later used in the re®nement of the three-dimensional model.

This splitting resulted in an important decrease (from Biso of

�7.5 to �4 AÊ 2) of the K4 temperature displacement.

The absence of any satellite in the X-ray powder diffraction

pattern was the only evidence for the existence of a three-

dimensional phase. In order to compare the modulated

structure solution obtained in the present work and the

experimental powder X-ray diffraction data reported by

Zhizhin et al. (2002), we used our incommensurate structure

solution to calculate the corresponding diffraction pro®le . The

modulated structure was re®ned from the same powder

diffraction data with the program JANA2000 (PetrÏõÂcÏek &

DusÏek, 2000). All the structural parameters were ®xed at

values found from single-crystal data in order to keep the

number of re®ned parameters within a reasonable limit. The

characteristics of the re®nement were slightly better than

those for the three-dimensional structure model. Portions of

the re®ned pro®les are shown in Fig. 9. As can be seen, the

experimental pro®le does exhibit very broad and weak back-

ground bulges at the highest satellite locations. The weaker

satellites are practically non-visible in the calculated diagram.

Therefore, the X-ray powder diffraction experiment does

not contradict the incommensurately modulated structure of

the powder sample. On the other hand, this example does not

allow us to detect an eventual modulated structure using

X-ray powder diffraction data only.

5. Conclusions

The main conclusions of the present work are as follows.

The incommensurately modulated phase of K3In(PO4)2 is

the only phase that has been unequivocally identi®ed at room

temperature.
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Table 4
Distances (AÊ ) in the cationic subset of A3RP2O8 (A = Na, K, Rb; R = In, Fe) double phosphates compared with the Na3InP2 alloy.

Na3InP2 �-Na3InP2O8 �-Na3InP2O8 Na3FeP2O8 K3InP2O8 Rb3InP2O8

PÐP
Close packing; CN = 12 4.01±5.08 4.08±5.54 4.01±5.39 4.14±5.19 4.1±6.4 4.05±6.44

h4.58i h4.51i h4.73i h4.85i h5.2i h5.27i
AÐP
Tetrahedron or bipyramid; CN = 4 (+ 1) 2.81±2.91 ²3.00±3.49 ²2.96±3.51 ²2.84±3.40 ²3.05±3.85 ²3.29±4.03

h2.87i (+ 4.47) h3.16i (+ 3.60) h3.15i (+ 3.81) h3.09i (+ 3.55) h3.5i h3.58i
Octahedron; CN = 6 2.86±4.12 3.55±3.62 3.41±3.79 3.40±3.61 3.3±4.4 3.41±4.49

h3.31i h3.60i h3.57i h3.53i h3.75i h3.94i
RÐP
Tetrahedron or bipyramid; CN = 4 (+ 1) 2.59±2.68 ± ± ± ²2.84±3.5 ²2.82±3.56

h2.635i (+ 3.6) h3.36i (+ 3.59) h3.37i
Octahedron; CN = 6 ± 3.48±3.61 3.40±3.48 ²3.28±3.42 ± ±

h3.40i h3.43i h3.35i

² The AÐP and RÐP bonds with the most likely covalent component.
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In the incommensurately modulated structure of

K3In(PO4)2:

(i) every PO4 tetrahedral anion is a rigid building unit

characterized by strong PÐO covalent bonds and tetrahedral

angles; the PÐO bonds are much stronger than all other

interatomic interactions including InÐO;

(ii) the PO4 anions form a hexagonal close packing; In

cations ®ll half of the bipyramids; K cations are localized in all

octahedra and in half of the bipyramids;

(iii) the origin of the structure modulation relates to the

ordering of the K4 cations over the two tetrahedra that form

the bipyramids; the modulation of all other cations follows the

behaviour of K4, which conserves the K4±P interactions; the

modulation of the O atoms follows the behaviour of the

cations;

(iv) the translation modulations of the PO4 tetrahedra are

required in order to stabilize the cationic K3InP2 subset, while

the rotation modulations of the P2O4 tetrahedron are required

for the InO6 octahedron stabilization.

From the incommensurately modulated structures, the

relative stability and power of chemical bonds can be deduced

for certain compounds: the more stable an interatomic

distance along t, the stronger the chemical bond.

Considerations of the cation±[centre of the anion] complex

interaction can be used to describe and understand the

stabilization of a large group of A3R(XO4)2 compounds (A is

Figure 8
Comparison of A3R(PO4)2 double phosphate structures (A = Na, Rb; R = Fe, In) and the Na3InP2 alloy. Characteristic layers similar to K3In(PO4)2 are
represented with a notation analogous to that in Fig. 3.



an alkaline element; R = Y, Bi, In, rare earth or transferring

element; X = S, P, V, As), all of them related to the well known

glaserite [K2Na(SO4)2] and/or the �-K2SO4 structure type.
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Figure 9
Two portions of the X-ray powder diffractogram approximated with (a) the three-dimensional structure re®nement (Zhizhin et al., 2002) and (b) the
modulated structure re®nement (present work). Dotted lines refer to the experimental data. In each case, the lower line is the residual; the arrows point
to the location of satellite re¯ections.


